Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38442768

ABSTRACT

OBJECTIVE: To investigate whether tibiofemoral alignment influences early knee osteoarthritis (OA). We hypothesized that varus overload exacerbates early degenerative osteochondral changes, and that valgus underload diminishes early OA. METHOD: Normal, over- and underload were induced by altering alignment via high tibial osteotomy in adult sheep (n = 8 each). Simultaneously, OA was induced by partial medial anterior meniscectomy. At 6 weeks postoperatively, OA was examined in five individual subregions of the medial tibial plateau using Kellgren-Lawrence grading, quantification of macroscopic OA, semiquantitative histopathological OA and immunohistochemical type-II collagen, ADAMTS-5, and MMP-13 scoring, biochemical determination of DNA and proteoglycan contents, and micro-computed tomographic evaluation of the subchondral bone. RESULTS: Multivariate analyses revealed that OA cartilaginous changes had a temporal priority over subchondral bone changes. Underload inhibited early cartilage degeneration in a characteristic topographic pattern (P ≥ 0.0983 vs. normal), in particular below the meniscal damage, avoided alterations of the subarticular spongiosa (P ≥ 0.162 vs. normal), and prevented the disturbance of otherwise normal osteochondral correlations. Overload induced early alterations of the subchondral bone plate microstructure towards osteopenia, including significantly decreased percent bone volume and increased bone surface-to-volume ratio (all P ≤ 0.0359 vs. normal). CONCLUSION: The data provide high-resolution evidence that tibiofemoral alignment modulates early OA induced by a medial meniscus injury in adult sheep. Since underload inhibits early OA, these data also support the clinical value of strategies to reduce the load in an affected knee compartment to possibly decelerate structural OA progression.

2.
Am J Sports Med ; 52(5): 1336-1349, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38482805

ABSTRACT

BACKGROUND: Restoration of osteochondral defects is critical, because osteoarthritis (OA) can arise. HYPOTHESIS: Overexpression of insulin-like growth factor 1 (IGF-1) via recombinant adeno-associated viral (rAAV) vectors (rAAV-IGF-1) would improve osteochondral repair and reduce parameters of early perifocal OA in sheep after 6 months in vivo. STUDY DESIGN: Controlled laboratory study. METHODS: Osteochondral defects were created in the femoral trochlea of adult sheep and treated with rAAV-IGF-1 or rAAV-lacZ (control) (24 defects in 6 knees per group). After 6 months in vivo, osteochondral repair and perifocal OA were assessed by well-established macroscopic, histological, and immunohistochemical scoring systems as well as biochemical and micro-computed tomography evaluations. RESULTS: Application of rAAV-IGF-1 led to prolonged (6 months) IGF-1 overexpression without adverse effects, maintaining a significantly superior overall cartilage repair, together with significantly improved defect filling, extracellular matrix staining, cellular morphology, and surface architecture compared with rAAV-lacZ. Expression of type II collagen significantly increased and that of type I collagen significantly decreased. Subchondral bone repair and tidemark formation were significantly improved, and subchondral bone plate thickness and subarticular spongiosa mineral density returned to normal. The OA parameters of perifocal structure, cell cloning, and matrix staining were significantly better preserved upon rAAV-IGF-1 compared with rAAV-lacZ. Novel mechanistic associations between parameters of osteochondral repair and OA were identified. CONCLUSION: Local rAAV-mediated IGF-1 overexpression enhanced osteochondral repair and ameliorated parameters of perifocal early OA. CLINICAL RELEVANCE: IGF-1 gene therapy may be beneficial in repair of focal osteochondral defects and prevention of perifocal OA.


Subject(s)
Cartilage, Articular , Insulin-Like Growth Factor I , Osteoarthritis , Animals , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Dependovirus/genetics , Genetic Therapy , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/therapeutic use , Osteoarthritis/genetics , Osteoarthritis/therapy , Osteoarthritis/metabolism , Satellite Viruses/genetics , Satellite Viruses/metabolism , Sheep/genetics , X-Ray Microtomography
3.
Adv Healthc Mater ; 12(26): e2300931, 2023 10.
Article in English | MEDLINE | ID: mdl-37567219

ABSTRACT

Articular cartilage defects represent an unsolved clinical challenge. Photopolymerizable hydrogels are attractive candidates supporting repair. This study investigates the short-term safety and efficacy of two novel hyaluronic acid (HA)-triethylene glycol (TEG)-coumarin hydrogels photocrosslinked in situ in a clinically relevant large animal model. It is hypothesized that HA-hydrogel-augmented microfracture (MFX) is superior to MFX in enhancing early cartilage repair, and that the molar degree of substitution and concentration of HA affects repair. Chondral full-thickness defects in the knees of adult minipigs are treated with either 1) debridement (No MFX), 2) debridement and MFX, 3) debridement, MFX, and HA hydrogel (30% molar derivatization, 30 mg mL-1 HA; F3) (MFX+F3), and 4) debridement, MFX, and HA hydrogel (40% molar derivatization, 20 mg mL-1 HA; F4) (MFX+F4). After 8 weeks postoperatively, MFX+F3 significantly improves total macroscopic and histological scores compared with all other groups without negative effects, besides significantly enhancing the individual repair parameters "defect architecture," "repair tissue surface" (compared with No MFX, MFX), and "subchondral bone" (compared with MFX). These data indicate that photopolymerizable HA hydrogels enable a favorable metastable microenvironment promoting early chondrogenesis in vivo. This work also uncovers a mechanism for effective HA-augmented cartilage repair by combining lower molar derivatization with higher concentrations.


Subject(s)
Cartilage, Articular , Animals , Swine , Cartilage, Articular/pathology , Swine, Miniature , Hyaluronic Acid/pharmacology , Hydrogels/pharmacology , Models, Animal
4.
Clin Oral Investig ; 27(9): 4987-5000, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37329464

ABSTRACT

OBJECTIVES: To compare the cytotoxicity of octenidine dihydrochloride and chlorhexidine gluconate at different concentrations on primary human articular chondrocytes and cartilage. MATERIALS AND METHODS: Primary cultures of human normal adult articular chondrocytes were exposed to octenidine dihydrochloride (0.001562%, 0.003125%, 0.00625%, 0.0125%, 0.025%, 0.05%, and 0.1%), chlorhexidine gluconate (0.003125%, 0.00625%, 0.0125%, 0.025%, 0.05%, 0.1%, and 0.2%), and control (Dulbecco's modified Eagle medium or phosphate-buffered saline) for 30 s. Normal human articular cartilage explants were exposed to octenidine dihydrochloride (0.1% versus control) and chlorhexidine gluconate (0.1% versus control) for 30 s. The viability of human articular chondrocytes was measured by Trypan blue staining, Cell Proliferation Reagent WST-1, and Live/Dead staining. The proliferation of human chondrocytes was measured using the Cell Proliferation Reagent WST-1. The viability of human articular cartilage explants was measured by using Live/Dead staining. RESULTS: Octenidine dihydrochloride and chlorhexidine gluconate exposure decreased cell viability and proliferation in a dose-dependent manner in primary human articular chondrocytes. Octenidine dihydrochloride and chlorhexidine gluconate exposure decreased cell viability in human articular cartilage explant cultures. CONCLUSION: The degree of toxicity varied between octenidine dihydrochloride and chlorhexidine gluconate, with chlorhexidine gluconate being less toxic than octenidine dihydrochloride at the same concentration. Additionally, both octenidine dihydrochloride and chlorhexidine gluconate evaluation had cytotoxic effects on human articular cartilage. Therefore, dosing for the antimicrobial mouthwash ingredients administration would ideally be determined to remain below IC50. CLINICAL RELEVANCE: These data support the in vitro safety of antimicrobial mouthwashes on primary adult human articular chondrocytes.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Cartilage, Articular , Adult , Humans , Chondrocytes , Mouthwashes/pharmacology , Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology
5.
Hum Gene Ther ; 33(17-18): 950-958, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35722904

ABSTRACT

Implantation of genetically modified chondrogenically competent human bone marrow-derived mesenchymal stromal cells (hMSCs) is an attractive strategy to improve cartilage repair. The goal of this study was to examine the potential benefits of transferring a sequence coding for the bone morphogenetic protein 3 (BMP-3) that modulates bone and cartilage formation, using recombinant adeno-associated virus (rAAV) vectors on the chondroreparative activities of hMSCs. Undifferentiated and chondrogenically induced primary human MSCs were treated with an rAAV-hBMP-3 construct to evaluate its effects on the proliferative, metabolic, and chondrogenic activities of the cells compared with control (reporter rAAV-lacZ vector) condition. Effective BMP-3 expression was noted both in undifferentiated and chondrogenically differentiated cells in the presence of rAAV-hBMP-3 relative to rAAV-lacZ, stimulating cell proliferation and extracellular matrix (proteoglycans, type-II collagen) deposition together with higher levels of chondrogenic sex-determining region Y-type high-mobility group box 9 (SOX9) expression. rAAV-hBMP-3 also advantageously decreased terminal differentiation, hypertrophy, and osteogenesis (type-I/-X collagen and alkaline phosphatase expression), with reduced levels of osteoblast-related runt-related transcription factor 2 (RUNX-2) transcription factor and ß-catenin (osteodifferentiation mediator) and enhanced parathyroid hormone-related protein expression (inhibitor of hypertrophic maturation, calcification, and bone formation). This study shows the advantage of modifying hMSCs with rAAV-hBMP-3 to trigger adapted chondroreparative activities as a source of improved cells for transplantation protocols in cartilage defects.


Subject(s)
Dependovirus , Mesenchymal Stem Cells , Alkaline Phosphatase/metabolism , Bone Marrow/metabolism , Bone Morphogenetic Protein 3/metabolism , Cell Differentiation/genetics , Chondrogenesis/genetics , Collagen/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Dependovirus/genetics , Dependovirus/metabolism , Genetic Vectors/genetics , Humans , Parathyroid Hormone-Related Protein/metabolism , Proteoglycans , beta Catenin/metabolism
6.
Sci Transl Med ; 14(629): eabn0179, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35080913

ABSTRACT

Although osteoarthritis (OA), a leading cause of disability, has been associated with joint malalignment, scientific translational evidence for this link is lacking. In a clinical case study, we provide evidence of osteochondral recovery upon unloading symptomatic isolated medial tibiofemoral knee OA associated with varus malalignment. By mapping response correlations at high resolution, we identify spatially complex degenerative changes in cartilage after overloading in a clinically relevant ovine model. We further report that unloading diminishes OA cartilage degeneration and alterations of critical parameters of the subchondral bone plate in a similar topographic fashion. Last, therapeutic unloading shifted the articular cartilage and subchondral bone phenotype to normal and restored several physiological correlations disturbed in neutral and varus OA, suggesting a protective effect on the integrity of the entire osteochondral unit. Collectively, these findings identify modifiable trajectories with considerable translational potential to reduce the burden of human OA.


Subject(s)
Cartilage, Articular , Intra-Articular Fractures , Osteoarthritis, Knee , Animals , Bone and Bones , Knee Joint , Sheep
7.
Am J Sports Med ; 49(13): 3696-3707, 2021 11.
Article in English | MEDLINE | ID: mdl-34643471

ABSTRACT

BACKGROUND: Gene transfer of the transcription factor SOX9 with clinically adapted recombinant adeno-associated virus (rAAV) vectors offers a powerful tool to durably enhance the repair process at sites of osteochondral injuries and counteract the development of perifocal osteoarthritis (OA) in the adjacent articular cartilage. PURPOSE: To examine the ability of an rAAV sox9 construct to improve the repair of focal osteochondral defects and oppose perifocal OA development over time in a large translational model relative to control gene transfer. STUDY DESIGN: Controlled laboratory study. METHODS: Standardized osteochondral defects created in the knee joints of adult sheep were treated with rAAV-FLAG-hsox9 relative to control (reporter) rAAV-lacZ gene transfer. Osteochondral repair and degenerative changes in the adjacent cartilage were monitored using macroscopic, histological, immunohistological, and biochemical evaluations after 6 months. The microarchitecture of the subchondral bone was assessed by micro-computed tomography. RESULTS: Effective, prolonged sox9 overexpression via rAAV was significantly achieved in the defects after 6 months versus rAAV-lacZ treatment. The application of rAAV-FLAG-hsox9 improved the individual parameters of defect filling, matrix staining, cellular morphology, defect architecture, surface architecture, subchondral bone, and tidemark as well as the overall score of cartilage repair in the defects compared with rAAV-lacZ. The overexpression of sox9 led to higher levels of proteoglycan production, stronger type II collagen deposition, and reduced type I collagen immunoreactivity in the sox9- versus lacZ-treated defects, together with decreased cell densities and DNA content. rAAV-FLAG-hsox9 enhanced semiquantitative histological subchondral bone repair, while the microstructure of the incompletely restored subchondral bone in the sox9 defects was not different from that in the lacZ defects. The articular cartilage adjacent to the sox9-treated defects showed reduced histological signs of perifocal OA changes versus rAAV-lacZ. CONCLUSION: rAAV-mediated sox9 gene transfer enhanced osteochondral repair in sheep after 6 months and reduced perifocal OA changes. These results underline the potential of rAAV-FLAG-hsox9 as a therapeutic tool to treat cartilage defects and afford protection against OA. CLINICAL RELEVANCE: The delivery of therapeutic rAAV sox9 to sites of focal injuries may offer a novel, convenient tool to enhance the repair of osteochondral defects involving both the articular cartilage and the underlying subchondral bone and provide a protective role by reducing the extent of perifocal OA.


Subject(s)
Cartilage, Articular/injuries , Gene Transfer Techniques , Osteoarthritis/therapy , SOX9 Transcription Factor/genetics , Animals , Dependovirus , Disease Models, Animal , Genetic Therapy , Genetic Vectors , Sheep , X-Ray Microtomography
8.
Adv Mater ; 33(16): e2008451, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33734514

ABSTRACT

The regeneration of focal articular cartilage defects is complicated by the reduced quality of the repair tissue and the potential development of perifocal osteoarthritis (OA). Biomaterial-guided gene therapy may enhance cartilage repair by controlling the release of therapeutic sequences in a spatiotemporal manner. Here, the benefits of delivering a recombinant adeno-associated virus (rAAV) vector coding for the human insulin-like growth factor I (IGF-I) via an alginate hydrogel (IGF-I/AlgPH155) to enhance repair of full-thickness chondral defects following microfracture surgery after one year in minipigs versus control (lacZ/AlgPH155) treatment are reported. Sustained IGF-I overexpression is significantly achieved in the repair tissue of defects treated with IGF-I/AlgPH155 versus those receiving lacZ/AlgPH155 for one year and in the cartilage surrounding the defects. Administration of IGF-I/AlgPH155 significantly improves parameters of cartilage repair at one year relative to lacZ/AlgPH155 (semiquantitative total histological score, cell densities, matrix deposition) without deleterious or immune reactions. Remarkably, delivery of IGF-I/AlgPH155 also significantly reduces perifocal OA and inflammation after one year versus lacZ/AlgPH155 treatment. Biomaterial-guided rAAV gene transfer represents a valuable clinical approach to promote cartilage repair and to protect against OA.


Subject(s)
Cartilage, Articular/metabolism , Dependovirus/genetics , Insulin-Like Growth Factor I/genetics , Animals , Gene Expression , Genetic Therapy , Humans , Hydrogels/metabolism , Osteoarthritis , Swine , Swine, Miniature
9.
Am J Sports Med ; 49(4): 958-969, 2021 03.
Article in English | MEDLINE | ID: mdl-33606561

ABSTRACT

BACKGROUND: Osteochondral defects, if left untreated, do not heal and can potentially progress toward osteoarthritis. Direct gene transfer of basic fibroblast growth factor 2 (FGF-2) with the clinically adapted recombinant adeno-associated viral (rAAV) vectors is a powerful tool to durably activate osteochondral repair processes. PURPOSE: To examine the ability of an rAAV-FGF-2 construct to target the healing processes of focal osteochondral injury over time in a large translational model in vivo versus a control gene transfer condition. STUDY DESIGN: Controlled laboratory study. METHODS: Standardized osteochondral defects created in the knee joints of adult sheep were treated with an rAAV human FGF-2 (hFGF-2) vector by direct administration into the defect relative to control (reporter) rAAV-lacZ gene transfer. Osteochondral repair was monitored using macroscopic, histological, immunohistological, and biochemical methods and by micro-computed tomography after 6 months. RESULTS: Effective, localized prolonged FGF-2 overexpression was achieved for 6 months in vivo relative to the control condition without undesirable leakage of the vectors outside the defects. Such rAAV-mediated hFGF-2 overexpression significantly increased the individual histological parameter "percentage of new subchondral bone" versus lacZ treatment, reflected in a volume of mineralized bone per unit volume of the subchondral bone plate that was equal to a normal osteochondral unit. Also, rAAV-FGF-2 significantly improved the individual histological parameters "defect filling,""matrix staining," and "cellular morphology" and the overall cartilage repair score versus the lacZ treatment and led to significantly higher cell densities and significantly higher type II collagen deposition versus lacZ treatment. Likewise, rAAV-FGF-2 significantly decreased type I collagen expression within the cartilaginous repair tissue. CONCLUSION: The current work shows the potential of direct rAAV-mediated FGF-2 gene therapy to enhance osteochondral repair in a large, clinically relevant animal model over time in vivo. CLINICAL RELEVANCE: Delivery of therapeutic (hFGF-2) rAAV vectors in sites of focal injury may offer novel, convenient tools to enhance osteochondral repair in the near future.


Subject(s)
Cartilage, Articular , Fibroblast Growth Factor 2 , Animals , Fibroblast Growth Factor 2/genetics , Genetic Therapy , Genetic Vectors , Humans , Sheep , X-Ray Microtomography
10.
Hum Gene Ther ; 32(17-18): 895-906, 2021 09.
Article in English | MEDLINE | ID: mdl-33573471

ABSTRACT

Scaffold-guided viral gene therapy is a novel, powerful tool to enhance the processes of tissue repair in articular cartilage lesions by the delivery and overexpression of therapeutic genes in a noninvasive, controlled release manner based on a procedure that may protect the gene vehicles from undesirable host immune responses. In this study, we examined the potential of transferring a recombinant adeno-associated virus (rAAV) vector carrying a sequence for the highly chondroregenerative transforming growth factor beta (TGF-ß), using poly(ɛ-caprolactone) (PCL) films functionalized by the grafting of poly(sodium styrene sulfonate) (pNaSS) in chondrogenically competent bone marrow aspirates as future targets for therapy in cartilage lesions. Effective overexpression of TGF-ß in the aspirates by rAAV was achieved upon delivery using pNaSS-grafted and ungrafted PCL films for up to 21 days (the longest time point evaluated), with superior levels using the grafted films, compared with respective conditions without vector coating. The production of rAAV-mediated TGF-ß by pNaSS-grafted and ungrafted PCL films significantly triggered the biological activities and chondrogenic processes in the samples (proteoglycan and type-II collagen deposition and cell proliferation), while containing premature mineralization and hypertrophy relative to the other conditions, with overall superior effects supported by the pNaSS-grafted films. These observations demonstrate the potential of PCL film-assisted rAAV TGF-ß gene transfer as a convenient, off-the-shelf technique to enhance the reparative potential of the bone marrow in patients in future approaches for improved cartilage repair.


Subject(s)
Bone Marrow , Transforming Growth Factor beta , Cell Differentiation , Chondrogenesis , Genetic Therapy , Genetic Vectors/genetics , Humans , Transforming Growth Factor beta/genetics
11.
Nanomaterials (Basel) ; 10(5)2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32354138

ABSTRACT

Scaffold-assisted gene therapy is a highly promising tool to treat articular cartilage lesions upon direct delivery of chondrogenic candidate sequences. The goal of this study was to examine the feasibility and benefits of providing highly chondroreparative agents, the cartilage-specific sex-determining region Y-type high-mobility group 9 (SOX9) transcription factor or the transforming growth factor beta (TGF-ß), to human bone marrow-derived mesenchymal stromal cells (hMSCs) via clinically adapted, independent recombinant adeno-associated virus (rAAV) vectors formulated with carbon dots (CDs), a novel class of carbon-dominated nanomaterials. Effective complexation and release of a reporter rAAV-lacZ vector was achieved using four different CDs elaborated from 1-citric acid and pentaethylenehexamine (CD-1); 2-citric acid, poly(ethylene glycol) monomethyl ether (MW 550 Da), and N,N-dimethylethylenediamine (CD-2); 3-citric acid, branched poly(ethylenimine) (MW 600 Da), and poly(ethylene glycol) monomethyl ether (MW 2 kDa) (CD-3); and 4-citric acid and branched poly(ethylenimine) (MW 600 Da) (CD-4), allowing for the genetic modification of hMSCs. Among the nanoparticles, CD-2 showed an optimal ability for rAAV delivery (up to 2.2-fold increase in lacZ expression relative to free vector treatment with 100% cell viability for at least 10 days, the longest time point examined). Administration of therapeutic (SOX9, TGF-ß) rAAV vectors in hMSCs via CD-2 led to the effective overexpression of each independent transgene, promoting enhanced cell proliferation (TGF-ß) and cartilage matrix deposition (glycosaminoglycans, type-II collagen) for at least 21 days relative to control treatments (CD-2 lacking rAAV or associated to rAAV-lacZ), while advantageously restricting undesirable type-I and -X collagen deposition. These results reveal the potential of CD-guided rAAV gene administration in hMSCs as safe, non-invasive systems for translational strategies to enhance cartilage repair.

12.
Pharmaceutics ; 12(3)2020 Mar 21.
Article in English | MEDLINE | ID: mdl-32245159

ABSTRACT

BACKGROUND: The delivery of therapeutic genes in sites of articular cartilage lesions using non-invasive, scaffold-guided gene therapy procedures is a promising approach to stimulate cartilage repair while protecting the cargos from detrimental immune responses, particularly when targeting chondroreparative bone marrow-derived mesenchymal stromal cells in a natural microenvironment like marrow aspirates. METHODS: Here, we evaluated the benefits of providing a sequence for the cartilage-specific sex-determining region Y-type high-mobility group box 9 (SOX9) transcription factor to human marrow aspirates via recombinant adeno-associated virus (rAAV) vectors delivered by poly(ε-caprolactone) (PCL) films functionalized via grafting with poly(sodium styrene sulfonate) (pNaSS) to enhance the marrow chondrogenic potential over time. RESULTS: Effective sox9 overexpression was observed in aspirates treated with pNaSS-grafted or ungrafted PCL films coated with the candidate rAAV-FLAG-hsox9 (FLAG-tagged rAAV vector carrying a human sox9 gene sequence) vector for at least 21 days relative to other conditions (pNaSS-grafted and ungrafted PCL films without vector coating). Overexpression of sox9 via rAAV sox9/pNaSS-grafted or ungrafted PCL films led to increased biological and chondrogenic differentiation activities (matrix deposition) in the aspirates while containing premature osteogenesis and hypertrophy without impacting cell proliferation, with more potent effects noted when using pNaSS-grafted films. CONCLUSIONS: These findings show the benefits of targeting patients' bone marrow via PCL film-guided therapeutic rAAV (sox9) delivery as an off-the-shelf system for future strategies to enhance cartilage repair in translational applications.

13.
Adv Mater ; 32(2): e1906508, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31763733

ABSTRACT

Advanced biomaterial-guided delivery of gene vectors is an emerging and highly attractive therapeutic solution for targeted articular cartilage repair, allowing for a controlled and minimally invasive delivery of gene vectors in a spatiotemporally precise manner, reducing intra-articular vector spread and possible loss of the therapeutic gene product. As far as it is known, the very first successful in vivo application of such a biomaterial-guided delivery of a potent gene vector in an orthotopic large animal model of cartilage damage is reported here. In detail, an injectable and thermosensitive hydrogel based on poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO poloxamers, capable of controlled release of a therapeutic recombinant adeno-associated virus (rAAV) vector overexpressing the chondrogenic sox9 transcription factor in full-thickness chondral defects, is applied in a clinically relevant minipig model in vivo. These comprehensive analyses of the entire osteochondral unit with multiple standardized evaluation methods indicate that rAAV-FLAG-hsox9/PEO-PPO-PEO hydrogel-augmented microfracture significantly improves cartilage repair with a collagen fiber orientation more similar to the normal cartilage and protects the subchondral bone plate from early bone loss.


Subject(s)
Cartilage, Articular/metabolism , Dependovirus/genetics , Genetic Therapy , Genetic Vectors/genetics , Hydrogels/chemistry , Polyethylene Glycols/chemistry , Propylene Glycols/chemistry , Temperature , Animals , Drug Carriers/chemistry , Drug Liberation , Genetic Vectors/chemistry , Models, Molecular , Molecular Conformation , Poloxamer/chemistry , Swine
14.
J Clin Med ; 8(10)2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31591319

ABSTRACT

Gene therapy for osteoarthritis offers powerful, long-lasting tools that are well adapted to treat such a slow, progressive disorder, especially those therapies based on the clinically adapted recombinant adeno-associated viral (rAAV) vectors. Here, we examined the ability of an rAAV construct carrying a therapeutic sequence for the cartilage-specific SOX9 transcription factor to modulate the phenotype of human osteoarthritic articular chondrocytes compared with normal chondrocytes in a three-dimensional environment where the cells are embedded in their extracellular matrix. Successful sox9 overexpression via rAAV was noted for at least 21 days, leading to the significant production of major matrix components (proteoglycans, type-II collagen) without affecting the proliferation of the cells, while the cells contained premature hypertrophic processes relative to control conditions (reporter rAAV-lacZ application, absence of vector treatment). These findings show the value of using rAAV to adjust the osteoarthritic phenotype when the chondrocytes are confined in their inherently altered environment and the possibility of impacting key cellular processes via gene therapy to remodel human osteoarthritic cartilage lesions.

15.
J Clin Med ; 8(9)2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31466339

ABSTRACT

The application of chondrogenic gene sequences to human bone marrow-derived mesenchymal stromal cells (hMSCs) is an attractive strategy to activate the reparative activities of these cells as a means to enhance the processes of cartilage repair using indirect cell transplantation procedures that may improve the repopulation of cartilage lesions. In the present study, we examined the feasibility of co-delivering the highly competent transforming growth factor beta (TGF-ß) with the insulin-like growth factor I (IGF-I) in hMSCs via recombinant adeno-associated virus (rAAV) vector-mediated gene transfer prior to implantation in a human model of osteochondral defect (OCD) ex vivo that provides a microenvironment similar to that of focal cartilage lesions. The successful co-overexpression of rAAV TGF-ß/IGF-I in implanted hMSCs promoted the durable remodeling of tissue injury in human OCDs over a prolonged period of time (21 days) relative to individual gene transfer and the control (reporter lacZ gene) treatment, with enhanced levels of cell proliferation and matrix deposition (proteoglycans, type-II collagen) both in the lesions and at a distance, while hypertrophic, osteogenic, and catabolic processes could be advantageously delayed. These findings demonstrate the value of indirect, progenitor cell-based combined rAAV gene therapy to treat human focal cartilage defects in a natural environment as a basis for future clinical applications.

16.
Int J Mol Sci ; 20(10)2019 May 27.
Article in English | MEDLINE | ID: mdl-31137788

ABSTRACT

Application of chondroreparative gene vectors in cartilage defects is a powerful approach to directly stimulate the regenerative activities of bone-marrow-derived mesenchymal stem cells (MSCs) that repopulate such lesions. Here, we investigated the ability of combined recombinant adeno-associated virus (rAAV) vector-mediated delivery of the potent transforming growth factor beta (TGF-ß) and insulin-like growth factor I (IGF-I) to enhance the processes of chondrogenic differentiation in human MSCs (hMSCs) relative to individual candidate treatments and to reporter (lacZ) gene condition. The rAAV-hTGF-ß and rAAV-hIGF-I vectors were simultaneously provided to hMSC aggregate cultures (TGF-ß/IGF-I condition) in chondrogenic medium over time (21 days) versus TGF-ß/lacZ, IGF-I/lacZ, and lacZ treatments at equivalent vector doses. The cultures were then processed to monitor transgene (co)-overexpression, the levels of biological activities in the cells (cell proliferation, matrix synthesis), and the development of a chondrogenic versus osteogenic/hypertrophic phenotype. Effective, durable co-overexpression of TGF-ß with IGF-I via rAAV enhanced the proliferative, anabolic, and chondrogenic activities in hMSCs versus lacZ treatment and reached levels that were higher than those achieved upon single candidate gene transfer, while osteogenic/hypertrophic differentiation was delayed over the period of time evaluated. These findings demonstrate the potential of manipulating multiple therapeutic rAAV vectors as a tool to directly target bone-marrow-derived MSCs in sites of focal cartilage defects and to locally enhance the endogenous processes of cartilage repair.


Subject(s)
Chondrocytes/metabolism , Chondrogenesis , Insulin-Like Growth Factor I/genetics , Mesenchymal Stem Cells/metabolism , Transforming Growth Factor beta/genetics , Cell Differentiation , Cells, Cultured , Chondrocytes/cytology , Gene Transfer Techniques , Genetic Vectors/genetics , Humans , Insulin-Like Growth Factor I/metabolism , Mesenchymal Stem Cells/cytology , Parvovirinae/genetics , Transforming Growth Factor beta/metabolism
17.
Hum Gene Ther ; 29(11): 1277-1286, 2018 11.
Article in English | MEDLINE | ID: mdl-29717624

ABSTRACT

Combining gene therapy approaches with tissue engineering procedures is an active area of translational research for the effective treatment of articular cartilage lesions, especially to target chondrogenic progenitor cells such as those derived from the bone marrow. This study evaluated the effect of genetically modifying concentrated human mesenchymal stem cells from bone marrow to induce chondrogenesis by recombinant adeno-associated virus (rAAV) vector gene transfer of the sex-determining region Y-type high-mobility group box 9 (SOX9) factor upon seeding in three-dimensional-woven poly(ɛ-caprolactone; PCL) scaffolds that provide mechanical properties mimicking those of native articular cartilage. Prolonged, effective SOX9 expression was reported in the constructs for at least 21 days, the longest time point evaluated, leading to enhanced metabolic and chondrogenic activities relative to the control conditions (reporter lacZ gene transfer or absence of vector treatment) but without affecting the proliferative activities in the samples. The application of the rAAV SOX9 vector also prevented undesirable hypertrophic and terminal differentiation in the seeded concentrates. As bone marrow is readily accessible during surgery, such findings reveal the therapeutic potential of providing rAAV-modified marrow concentrates within three-dimensional-woven PCL scaffolds for repair of focal cartilage lesions.


Subject(s)
Bone Marrow/metabolism , Cell Differentiation , Chondrogenesis , Dependovirus/genetics , Gene Transfer Techniques , Polyesters/chemistry , SOX9 Transcription Factor/genetics , Tissue Scaffolds/chemistry , Genes, Reporter , Humans , Hypertrophy , Recombination, Genetic/genetics , Transduction, Genetic , Transgenes
18.
Am J Sports Med ; 46(8): 1987-1996, 2018 07.
Article in English | MEDLINE | ID: mdl-29792508

ABSTRACT

BACKGROUND: Application of the chondrogenic transforming growth factor beta (TGF-ß) is an attractive approach to enhance the intrinsic biological activities in damaged articular cartilage, especially when using direct gene transfer strategies based on the clinically relevant recombinant adeno-associated viral (rAAV) vectors. PURPOSE: To evaluate the ability of an rAAV-TGF-ß construct to modulate the early repair processes in sites of focal cartilage injury in minipigs in vivo relative to control (reporter lacZ gene) vector treatment. STUDY DESIGN: Controlled laboratory study. METHODS: Direct administration of the candidate rAAV-human TGF-ß (hTGF-ß) vector was performed in osteochondral defects created in the knee joint of adult minipigs for macroscopic, histological, immunohistochemical, histomorphometric, and micro-computed tomography analyses after 4 weeks relative to control (rAAV- lacZ) gene transfer. RESULTS: Successful overexpression of TGF-ß via rAAV at this time point and in the conditions applied here triggered the cellular and metabolic activities within the lesions relative to lacZ gene transfer but, at the same time, led to a noticeable production of type I and X collagen without further buildup on the subchondral bone. CONCLUSION: Gene therapy via direct, local rAAV-hTGF-ß injection stimulates the early reparative activities in focal cartilage lesions in vivo. CLINICAL RELEVANCE: Local delivery of therapeutic (TGF-ß) rAAV vectors in focal defects may provide new, off-the-shelf treatments for cartilage repair in patients in the near future.


Subject(s)
Cartilage, Articular/physiology , Genetic Therapy , Knee Injuries/therapy , Transforming Growth Factor beta/metabolism , Animals , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/injuries , Cell Proliferation , Chondrogenesis , Dependovirus/genetics , Genetic Vectors , Humans , Knee Injuries/diagnostic imaging , Knee Injuries/metabolism , Swine , Swine, Miniature , Transforming Growth Factor beta/genetics , X-Ray Microtomography
19.
Mol Pharm ; 15(7): 2816-2826, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29763553

ABSTRACT

Recombinant adeno-associated virus (rAAV) vectors are well suited carriers to provide durable treatments for human osteoarthritis (OA). Controlled release of rAAV from polymeric micelles was already shown to increase both the stability and bioactivity of the vectors while overcoming barriers, precluding effective gene transfer. In the present study, we examined the convenience of delivering rAAV vectors via poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) polymeric (PEO-PPO-PEO) micelles to transfer and overexpress the transcription factor SOX9 in monolayers of human OA chondrocytes and in experimentally created human osteochondral defects. Human osteoarthritic (OA) chondrocytes and human osteochondral defect models were produced using human OA cartilage obtained from patients subjected to total knee arthroplasty. Samples were genetically modified by adding a rAAV-FLAG-h sox9 vector in its free form or via polymeric micelles for 10 days relative to control conditions (unmodified cells). The effects of sox9 overexpression in human OA cartilage samples were monitored by biochemical, histological, and immunohistochemical analyses. Delivery of rAAV-FLAG-h sox9 via polymeric micelles enhanced the levels of sox9 expression compared with free vector administration, resulting in increased proteoglycan deposition and in a stimulated cell proliferation index in OA chondrocytes. Moreover, higher production of type II collagen and decreased hypertrophic events were noted in osteochondral defect cultures when compared with control conditions. Controlled therapeutic rAAV sox9 gene delivery using PEO-PPO-PEO micelles is a promising, efficient tool to promote the remodelling of human OA cartilage.


Subject(s)
Chondrocytes/metabolism , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Osteoarthritis/therapy , SOX9 Transcription Factor/genetics , Cartilage, Articular/cytology , Cartilage, Articular/metabolism , Cells, Cultured , Dependovirus/genetics , Genetic Vectors/genetics , Humans , Micelles , Osteoarthritis/pathology , Polyethylene Glycols/chemistry , Polymers/chemistry , Primary Cell Culture , Propylene Glycols/chemistry , Transduction, Genetic/methods
20.
Int J Nanomedicine ; 12: 6985-6996, 2017.
Article in English | MEDLINE | ID: mdl-29033566

ABSTRACT

Recombinant adeno-associated virus (rAAV) vectors are clinically adapted vectors to durably treat human osteoarthritis (OA). Controlled delivery of rAAV vectors via polymeric micelles was reported to enhance the temporal and spatial presentation of the vectors into their targets. Here, we tested the feasibility of delivering rAAV vectors via poly (ethylene oxide) (PEO) and poly (propylene oxide) (PPO) (poloxamer and poloxamine) polymeric micelles as a means to overexpress the therapeutic factor transforming growth factor-beta (TGF-ß) in human OA chondrocytes and in experimental human osteochondral defects. Application of rAAV-human transforming growth factor-beta using such micelles increased the levels of TGF-ß transgene expression compared with free vector treatment. Overexpression of TGF-ß with these systems resulted in higher proteoglycan deposition and increased cell numbers in OA chondrocytes. In osteochondral defect cultures, a higher deposition of type-II collagen and reduced hypertrophic events were noted. Delivery of therapeutic rAAV vectors via PEO-PPO-PEO micelles may provide potential tools to remodel human OA cartilage.


Subject(s)
Cartilage, Articular/pathology , Chondrocytes/pathology , Dependovirus/metabolism , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Micelles , Polyethylene Glycols/administration & dosage , Propylene Glycols/administration & dosage , Transforming Growth Factor beta/administration & dosage , Cell Proliferation/drug effects , Chondrocytes/drug effects , Humans , Hypertrophy , Models, Biological , Osteoarthritis/pathology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...